Числа и их свойства C7(19)

1 Свойства чисел

1.1

 

1.2

484654. Перед каж­дым из чисел 14, 15, . . ., 20 и 4, 5, . . ., 8 прозволь­ным об­ра­зом ста­вят знак плюс или минус, после чего от каж­до­го из об­ра­зо­вав­ших­ся чисел пер­во­го на­бо­ра от­ни­ма­ют каж­дое из об­ра­зо­вав­ших­ся чисел вто­ро­го на­бо­ра, а затем все 35 по­лу­чен­ных ре­зуль­та­тов скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю и какую наи­боль­шую сумму можно по­лу­чить в итоге?
Аналоги к заданию № 484654: 484661 507489

 

Дополнительные упражнения (на дом)

507495. Каж­дое из чисел 2, 3, …, 7 умно­жа­ют на каж­дое из чисел 13, 14, …, 21 и перед каж­дым из по­лу­чен­ных про­из­ве­де­ний про­из­воль­ным об­ра­зом ста­вят знак плюс или минус, после чего все 54 по­лу­чен­ных ре­зуль­та­та скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю и какую наи­боль­шую сумму можно по­лу­чить в итоге?

№ 484662. Каж­дое из чисел 5, 6, . . ., 9 умно­жа­ют на каж­дое из чисел 12, 13, . . ., 17 и перед каж­дым про­из­воль­ным об­ра­зом ста­вят знак плюс или минус, после чего все 30 по­лу­чен­ных ре­зуль­та­тов скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю сумму и какую наи­боль­шую сумму можно по­лу­чить в итоге?
Аналоги к заданию № 484662: 484666
1.3  № 484673. Сумма двух на­ту­раль­ных чисел равна 43, а их наи­мень­шее общее крат­ное в 120 раз боль­ше их наи­боль­ше­го об­ще­го де­ли­те­ля. Най­ди­те эти числа.

Аналоги к заданию № 484673: 511323

 

За­да­ние 19 № 514452. На доске на­пи­са­ны числа 2 и 3. За один ход из них можно по­лу­чить числа a + b и 2a − 1 или числа a + b и 2b − 1 (на­при­мер, из чисел 2 и 3 можно по­лу­чить числа 5 и 3 или 5 и 5).

а) При­ве­ди­те при­мер по­сле­до­ва­тель­но­сти ходов, после ко­то­рых одно из чисел, на­пи­сан­ных на доске ока­жет­ся чис­лом 19.

б) Может ли после 100 ходов одно из двух чисел, на­пи­сан­ных на доске, ока­зать­ся чис­лом 200?

в) Сде­ла­ли 1007 ходов, при­чем на доске ни­ко­гда не было рав­ных чисел. Какое наи­мень­шее зна­че­ние может при­ни­мать раз­ность боль­ше­го и мень­ше­го из по­лу­чен­ных чисел?

Аналоги к заданию № 514452: 514532 514742
 

Источник: ЕГЭ — 2016 по математике. Ос­нов­ная волна 06.06.2016. Вариант 410. Запад

Ре­ши­те в на­ту­раль­ных чис­лах урав­не­ние n! + 5n + 13 = k2, где n! = 1·2·...·n — про­из­ве­де­ние всех на­ту­раль­ных чисел от 1 до n.

Источник: МИОО: Тре­ни­ро­воч­ная ра­бо­та по ма­те­ма­ти­ке, но­ябрь 2009 года ва­ри­ант 1.
За­да­ние 19 № 507820
 

Аналоги к заданию № 507820: 511497


Дано трёхзнач­ное на­ту­раль­ное число (число не может на­чи­нать­ся с нуля), не крат­ное 100.

а) Может ли част­ное этого числа и суммы его цифр быть рав­ным 90?

б) Может ли част­ное этого числа и суммы его цифр быть рав­ным 88?

в) Какое наи­боль­шее на­ту­раль­ное зна­че­ние может иметь част­ное дан­но­го числа и суммы его цифр?

 
За­да­ние 19 № 502027
 

Аналоги к заданию № 502027: 502058 503325 503365 511370

 
Источник: ЕГЭ по ма­те­ма­ти­ке 10.06.2013. Вто­рая волна. Центр. Ва­ри­ант 601

Вася пе­ре­мно­жил не­сколь­ко раз­лич­ных на­ту­раль­ных чисел из от­рез­ка [23; 84]. Петя уве­ли­чил каж­дое из Ва­си­ных чисел на 1 и пе­ре­мно­жил все по­лу­чен­ные числа.

а) Может ли Петин ре­зуль­тат быть ровно вдвое боль­ше Ва­си­но­го?

б) Может ли Петин ре­зуль­тат быть ровно в 6 раз боль­ше Ва­си­но­го?

в) В какое наи­боль­шее целое число раз Петин ре­зуль­тат может быть боль­ше Ва­си­но­го?

 
За­да­ние 19 № 514511
 

Аналоги к заданию № 514511: 514518


Источник: ЕГЭ — 2016. Досрочная волна. Ва­ри­ант 201. Юг

2 Прогрессии

 

2.1

 484654. Перед каж­дым из чисел 14, 15, . . ., 20 и 4, 5, . . ., 8 прозволь­ным об­ра­зом ста­вят знак плюс или минус, после чего от каж­до­го из об­ра­зо­вав­ших­ся чисел пер­во­го на­бо­ра от­ни­ма­ют каж­дое из об­ра­зо­вав­ших­ся чисел вто­ро­го на­бо­ра, а затем все 35 по­лу­чен­ных ре­зуль­та­тов скла­ды­ва­ют. Какую наи­мень­шую по мо­ду­лю и какую наи­боль­шую сумму можно по­лу­чить в итоге?
Аналоги к заданию № 484654: 484661 507489

 

2.2



502079, дома  502099

 

а) Можно ли число 2014 пред­ста­вить в виде суммы двух раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр?

б) Можно ли число 199 пред­ста­вить в виде суммы двух раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр?

в) Най­ди­те наи­мень­шее на­ту­раль­ное число, ко­то­рое можно пред­ста­вить в виде суммы пяти раз­лич­ных на­ту­раль­ных чисел с оди­на­ко­вой сум­мой цифр.

 
За­да­ние 19 № 505503
 

Аналоги к заданию № 505503: 511410


 

Источник: За­да­ния 19 (С7) ЕГЭ 2014

Най­ди­те все про­стые числа p, для каж­до­го из ко­то­рых су­ще­ству­ет такое целое число k, что число p яв­ля­ет­ся общим де­ли­те­лем чисел и .

 
За­да­ние 19 № 484663
 

Аналоги к заданию № 484663: 484664 511321

Показать решение
 
 
40

Най­ди­те все про­стые числа b, для каж­до­го из ко­то­рых су­ще­ству­ет такое целое число а, что дробь можно со­кра­тить на b.

 
За­да­ние 19 № 484668
 

Аналоги к заданию № 484668: 484669 484670 511322


Най­дут­ся ли хотя бы три де­ся­ти­знач­ных числа, де­ля­щи­е­ся на 11, в за­пи­си каж­до­го из ко­то­рых ис­поль­зо­ва­ны все цифры от 0 до 9?

 
За­да­ние 19 № 484656
 

Аналоги к заданию № 484656: 511319


Про на­ту­раль­ное число N из­вест­но, что сумма его че­ты­рех наи­мень­ших на­ту­раль­ных де­ли­те­лей равна 12.

А) Может ли сумма че­ты­рех наи­боль­ших на­ту­раль­ных де­ли­те­лей числа N рав­нять­ся 195?

Б) Может ли сумма че­ты­рех наи­боль­ших на­ту­раль­ных де­ли­те­лей числа N рав­нять­ся 120?

В) Най­ди­те все воз­мож­ные числа N, у ко­то­рых сумма че­ты­рех наи­боль­ших на­ту­раль­ных де­ли­те­лей не пре­вос­хо­дит 100.

 
За­да­ние 0 № 508165
 
 
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 97.

Лемма: если разложение числа на простые множители имеет вид $ a= p_1^{m_1}p_2^{m_2}...p_n^{m_n} $, то количество делителей этого числа равно $ N=( m_1 +1)(m_2+1)...(m_n+1) $

А) Най­ди­те какое-либо на­ту­раль­ное число, у ко­то­ро­го ровно 10 де­ли­те­лей (вклю­чая 1 и само число).

Б) Най­ди­те наи­мень­шее на­ту­раль­ное число, у ко­то­ро­го ровно 10 де­ли­те­лей.

В) Най­ди­те все трех­знач­ные не­чет­ные на­ту­раль­ные числа, у ко­то­рых ровно 10 де­ли­те­лей.

 
За­да­ние 0 № 508171
 
 
Источник: А. Ларин: Тре­ни­ро­воч­ный ва­ри­ант № 98.

3 Наборы на карточках и досках

 

Каж­дое из чисел 1, -2, -3, 4, -5, 7, -8, 9 по од­но­му за­пи­сы­ваю на 8 кар­точ­ках. Кар­точ­ки пе­ре­во­ра­чи­ва­ют и пе­ре­ме­ши­ва­ют. На их чи­стых сто­ро­нах за­но­во пишут по од­но­му каж­дое из чисел 1, -2, -3, 4, -5, 7, -8, 9. После этого числа на каж­дой кар­точ­ке скла­ды­ва­ют, а по­лу­чен­ные во­семь сумм пе­ре­мно­жа­ют.

 

а) Может ли в ре­зуль­та­те по­лу­чить­ся 0?

б) Может ли в ре­зуль­та­те по­лу­чить­ся 1?

в) Какое наи­мень­шее целое не­от­ри­ца­тель­ное число может в ре­зуль­та­те по­лу­чить­ся?

 

 
За­да­ние 19 № 500017
 

Аналоги к заданию № 500017: 500452 500472

 
8

Име­ет­ся 8 кар­то­чек. На них за­пи­сы­ва­ют по од­но­му каж­дое из чисел 1, -2, -3, 4, -5, 7, -8, 9. Кар­точ­ки пе­ре­во­ра­чи­ва­ют и пе­ре­ме­ши­ва­ют. На их чи­стых сто­ро­нах за­но­во пишут по од­но­му каж­дое из чисел 1, -2, -3, 4, -5, 7, -8, 9. После этого числа на каж­дой кар­точ­ке скла­ды­ва­ют, а по­лу­чен­ные во­семь сумм пе­ре­мно­жа­ют.

 

а) Может ли в ре­зуль­та­те по­лу­чить­ся 0?

б) Может ли в ре­зуль­та­те по­лу­чить­ся 1?

в) Какое наи­мень­шее целое не­от­ри­ца­тель­ное число может в ре­зуль­та­те по­лу­чить­ся?

 
За­да­ние 19 № 500023
 

Аналоги к заданию № 500023: 500966

Показать решение

Каж­дое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11 по од­но­му за­пи­сы­ва­ют на 10 кар­точ­ках. Кар­точ­ки пе­ре­во­ра­чи­ва­ют и пе­ре­ме­ши­ва­ют. На их чи­стых сто­ро­нах за­но­во пишут по од­но­му каж­дое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11. После этого числа на каж­дой кар­точ­ке скла­ды­ва­ют, а по­лу­чен­ные 10 сумм пе­ре­мно­жа­ют.

а) Может ли в ре­зуль­та­те по­лу­чить­ся 0?

б) Может ли в ре­зуль­та­те по­лу­чить­ся 1?

в) Какое наи­мень­шее целое не­от­ри­ца­тель­ное число может в ре­зуль­та­те по­лу­чить­ся?

 
За­да­ние 19 № 514921
 
 
Источник: И. В. Яковлев: Материалы по математике 2012 год
Показать решение

За­ду­ма­но не­сколь­ко (не обя­за­тель­но раз­лич­ных) на­ту­раль­ных чисел. Эти числа и их все воз­мож­ные суммы (по 2, по 3 и т. д.) вы­пи­сы­ва­ют на доску в по­ряд­ке не­убы­ва­ния. Если какое-то число n, вы­пи­сан­ное на доску, по­вто­ря­ет­ся не­сколь­ко раз, то на доске остав­ля­ет­ся одно такое число n, а осталь­ные числа, рав­ные n, сти­ра­ют­ся. На­при­мер, если за­ду­ма­ны числа 1, 3, 3, 4, то на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.

 

а) При­ве­ди­те при­мер за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 2, 4, 6, 8, 10.

б) Су­ще­ству­ет ли при­мер таких за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?

в) При­ве­ди­те все при­ме­ры за­ду­ман­ных чисел, для ко­то­рых на доске будет за­пи­сан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.

 
За­да­ние 19 № 501694
 

Аналоги к заданию № 501694: 501949 501989 502298

 
Источник: ЕГЭ по ма­те­ма­ти­ке 03.06.2013. Ос­нов­ная волна. Центр. Ва­ри­ант 1.

На доске на­пи­са­но число 7. Раз в ми­ну­ту Вася до­пи­сы­ва­ет на доску одно число: либо вдвое боль­шее ка­ко­го-то из чисел на доске, либо рав­ное сумме каких-то двух чисел, на­пи­сан­ных на доске (таким об­ра­зом, через одну ми­ну­ту на доске по­явит­ся вто­рое число, через две ― тре­тье и т.д.).

 

а) Может ли в какой-то мо­мент на доске ока­зать­ся число 2012?

б) Может ли в какой-то мо­мент сумма всех чисел на доске рав­нять­ся 63?

в) Через какое наи­мень­шее время на доске может по­явить­ся число 784?

 

 
За­да­ние 19 № 500005
 

Аналоги к заданию № 500005: 500011


 

На доске на­пи­са­но более 27, но менее 45 целых чисел. Сред­нее ариф­ме­ти­че­ское этих чисел равно −5, сред­нее ариф­ме­ти­че­ское всех по­ло­жи­тель­ных из них равно 9, а сред­нее ариф­ме­ти­че­ское всех от­ри­ца­тель­ных из них равно −18.

а) Сколь­ко чисел на­пи­са­но на доске?

б) Каких чисел на­пи­са­но боль­ше: по­ло­жи­тель­ных или от­ри­ца­тель­ных?

в) Какое наи­боль­шее ко­ли­че­ство по­ло­жи­тель­ных чисел может быть среди них?

За­да­ние 19 № 505540
 

На доске на­пи­са­но более 40, но менее 48 целых чисел. Сред­нее ариф­ме­ти­че­ское этих чисел равно −3, сред­нее ариф­ме­ти­че­ское всех по­ло­жи­тель­ных из них равно 4, сред­нее ариф­ме­ти­че­ское всех от­ри­ца­тель­ных из них равно −8.

а) Сколь­ко чисел на­пи­са­но на доске?

б) Каких чисел на­пи­са­но боль­ше: по­ло­жи­тель­ных или от­ри­ца­тель­ных?

в) Какое наи­боль­шее ко­ли­че­ство по­ло­жи­тель­ных чисел может быть среди них?

 
За­да­ние 19 № 500820
 
 
Источник: Де­мон­стра­ци­он­ная вер­сия ЕГЭ—2013 по математике.