Числа и их свойства C7(19)
1 Свойства чисел
1.1
1.2
Аналоги к заданию № 484654: 484661 507489
Дополнительные упражнения (на дом)
507495. Каждое из чисел 2, 3, …, 7 умножают на каждое из чисел 13, 14, …, 21 и перед каждым из полученных произведений произвольным образом ставят знак плюс или минус, после чего все 54 полученных результата складывают. Какую наименьшую по модулю и какую наибольшую сумму можно получить в итоге?
Аналоги к заданию № 484662: 484666
1.3 № 484673. Сумма двух натуральных чисел равна 43, а их наименьшее общее кратное в 120 раз больше их наибольшего общего делителя. Найдите эти числа.
Аналоги к заданию № 484673: 511323
а) Приведите пример последовательности ходов, после которых одно из чисел, написанных на доске окажется числом 19.
б) Может ли после 100 ходов одно из двух чисел, написанных на доске, оказаться числом 200?
в) Сделали 1007 ходов, причем на доске никогда не было равных чисел. Какое наименьшее значение может принимать разность большего и меньшего из полученных чисел?
Решите в натуральных числах уравнение n! + 5n + 13 = k2, где n! = 1·2·...·n — произведение всех натуральных чисел от 1 до n.
Аналоги к заданию № 507820: 511497
Дано трёхзначное натуральное число (число не может начинаться с нуля), не кратное 100.
а) Может ли частное этого числа и суммы его цифр быть равным 90?
б) Может ли частное этого числа и суммы его цифр быть равным 88?
в) Какое наибольшее натуральное значение может иметь частное данного числа и суммы его цифр?
Вася перемножил несколько различных натуральных чисел из отрезка [23; 84]. Петя увеличил каждое из Васиных чисел на 1 и перемножил все полученные числа.
а) Может ли Петин результат быть ровно вдвое больше Васиного?
б) Может ли Петин результат быть ровно в 6 раз больше Васиного?
в) В какое наибольшее целое число раз Петин результат может быть больше Васиного?
2 Прогрессии
2.1
Аналоги к заданию № 484654: 484661 507489
2.2
502079, дома 502099
а) Можно ли число 2014 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?
б) Можно ли число 199 представить в виде суммы двух различных натуральных чисел с одинаковой суммой цифр?
в) Найдите наименьшее натуральное число, которое можно представить в виде суммы пяти различных натуральных чисел с одинаковой суммой цифр.
Найдите все простые числа p, для каждого из которых существует такое целое число k, что число p является общим делителем чисел и
.
Найдите все простые числа b, для каждого из которых существует такое целое число а, что дробь можно сократить на b.
Найдутся ли хотя бы три десятизначных числа, делящиеся на 11, в записи каждого из которых использованы все цифры от 0 до 9?
Аналоги к заданию № 484656: 511319
Про натуральное число N известно, что сумма его четырех наименьших натуральных делителей равна 12.
А) Может ли сумма четырех наибольших натуральных делителей числа N равняться 195?
Б) Может ли сумма четырех наибольших натуральных делителей числа N равняться 120?
В) Найдите все возможные числа N, у которых сумма четырех наибольших натуральных делителей не превосходит 100.
Лемма: если разложение числа на простые множители имеет вид $ a= p_1^{m_1}p_2^{m_2}...p_n^{m_n} $, то количество делителей этого числа равно $ N=( m_1 +1)(m_2+1)...(m_n+1) $
А) Найдите какое-либо натуральное число, у которого ровно 10 делителей (включая 1 и само число).
Б) Найдите наименьшее натуральное число, у которого ровно 10 делителей.
В) Найдите все трехзначные нечетные натуральные числа, у которых ровно 10 делителей.
3 Наборы на карточках и досках
Каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9 по одному записываю на 8 карточках. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.
а) Может ли в результате получиться 0?
б) Может ли в результате получиться 1?
в) Какое наименьшее целое неотрицательное число может в результате получиться?
Имеется 8 карточек. На них записывают по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, -2, -3, 4, -5, 7, -8, 9. После этого числа на каждой карточке складывают, а полученные восемь сумм перемножают.
а) Может ли в результате получиться 0?
б) Может ли в результате получиться 1?
в) Какое наименьшее целое неотрицательное число может в результате получиться?
Каждое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11 по одному записывают на 10 карточках. Карточки переворачивают и перемешивают. На их чистых сторонах заново пишут по одному каждое из чисел 1, −2, −3, 4, −5, 7, −8, 9, 10, −11. После этого числа на каждой карточке складывают, а полученные 10 сумм перемножают.
а) Может ли в результате получиться 0?
б) Может ли в результате получиться 1?
в) Какое наименьшее целое неотрицательное число может в результате получиться?
Задумано несколько (не обязательно различных) натуральных чисел. Эти числа и их все возможные суммы (по 2, по 3 и т. д.) выписывают на доску в порядке неубывания. Если какое-то число n, выписанное на доску, повторяется несколько раз, то на доске оставляется одно такое число n, а остальные числа, равные n, стираются. Например, если задуманы числа 1, 3, 3, 4, то на доске будет записан набор 1, 3, 4, 5, 6, 7, 8, 10, 11.
а) Приведите пример задуманных чисел, для которых на доске будет записан набор 2, 4, 6, 8, 10.
б) Существует ли пример таких задуманных чисел, для которых на доске будет записан набор 1, 3, 4, 5, 6, 8, 10, 11, 12, 13, 15, 17, 18, 19, 20, 22?
в) Приведите все примеры задуманных чисел, для которых на доске будет записан набор 7, 8, 10, 15, 16, 17, 18, 23, 24, 25, 26, 31, 33, 34, 41.
На доске написано число 7. Раз в минуту Вася дописывает на доску одно число: либо вдвое большее какого-то из чисел на доске, либо равное сумме каких-то двух чисел, написанных на доске (таким образом, через одну минуту на доске появится второе число, через две ― третье и т.д.).
а) Может ли в какой-то момент на доске оказаться число 2012?
б) Может ли в какой-то момент сумма всех чисел на доске равняться 63?
в) Через какое наименьшее время на доске может появиться число 784?
Аналоги к заданию № 500005: 500011
На доске написано более 27, но менее 45 целых чисел. Среднее арифметическое этих чисел равно −5, среднее арифметическое всех положительных из них равно 9, а среднее арифметическое всех отрицательных из них равно −18.
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?
Задание 19 № 505540На доске написано более 40, но менее 48 целых чисел. Среднее арифметическое этих чисел равно −3, среднее арифметическое всех положительных из них равно 4, среднее арифметическое всех отрицательных из них равно −8.
а) Сколько чисел написано на доске?
б) Каких чисел написано больше: положительных или отрицательных?
в) Какое наибольшее количество положительных чисел может быть среди них?